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Abstract—Shape space is an active research topic in computer vision and medical imaging fields. The distance defined in a shape

space may provide a simple and refined index to represent a unique shape. This work studies the Wasserstein space and proposes a

novel framework to compute the Wasserstein distance between general topological surfaces by integrating hyperbolic Ricci flow,

hyperbolic harmonic map, and hyperbolic power Voronoi diagram algorithms. The resulting hyperbolic Wasserstein distance can

intrinsically measure the similarity between general topological surfaces. Our proposed algorithms are theoretically rigorous and

practically efficient. It has the potential to be a powerful tool for 3D shape indexing research. We tested our algorithm with human face

classification and Alzheimer’s disease (AD) progression tracking studies. Experimental results demonstrated that our work may provide

a succinct and effective shape index.

Index Terms—Shape space, hyperbolic conformal geometry, Wasserstein distance, shape indexing
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1 INTRODUCTION

WITH the rapid development of 3D imaging and scan-
ning techniques, 3D surface-based representations

of real-life objects are becoming more popular. Effective
algorithms to store, classify, and retrieve 3D surface models
are highly demanded. Shape indexing refers to the process
to extract concise, refined, and meaningful shape descrip-
tors from 3D models to represent the geometric or topo-
logical features that are able to accurately describe the
similarities and dissimilarities between different shapes.
The shape space [1] provides a suitable tool for shape index-
ing research. Commonly used shape space models include
the Kendall’s space [2], the space of diffeomorphisms [3],
the Gromov-Hausdorff space [4] and the Techm€uller space
[5], etc. Recently, the Wasserstein space, which consists of
all probability measures that are defined on a Riemannian
manifold, is attracting more attention. Wasserstein distance
(also known as earth mover’s distance [6]) defines a
Riemannian metric for the Wasserstein space and it intrinsi-
cally compares the similarities between different shapes.
The advantages of the Wasserstein distance include:

1) Accuracy. The Wasserstein space is continuous [7].
Thus the geodesic distance in Wasserstein space is
known for its high accuracy and robustness for near-
est neighbor retrievals or distribution comparison.
This property makes Wasserstein distance attractive

for 3D image analysis study, where a high accuracy
is usually required.

2) Efficiency. The Wasserstein distance is computed by
the optimal mass transportation (OMT) map [8],
which can be efficiently solved by the Monge-Brenier
optimization [8]. Given the enormous amount of 3D
geometric data being generated daily, the Wasser-
stein distance may provide an effective solution for
3D shape indexing research.

3) Robustness to Noise. The Wasserstein distance consid-
ers a transportation between two probability meas-
ures on a canonical image or surface, so it is robust
to image noise. It has the potential to quantitatively
measure 3D shapes reconstructed from images and
provide a theoretically rigorous foundation for 3D
shape analysis.

Wasserstein distance has been well studied and widely
applied in image processing and shape analysis research. By
measuring the similarities between normalized histograms,
Ni et al. [9] proposed a nonparametric region-based active
contour model for image segmentation. Schmitzer et al. [10]
introduced a functional for variational object segmentation
and shape matching. By interpreting the image intensities as
the probabilitymeasure distribution, theWasserstein distance
is naturally applied for image comparison. A linearizedWas-
serstein distance was proposed in [11], to efficiently quantify
and visualize variations in large sets of images. While these
methods work well with 2D images, the Wasserstein distance
cannot be directly applied to 3D-surface based shape analysis.
In differential geometry, a surface is a two dimensional mani-
fold that can be embedded in 3D real spaceR3. SupposeM is
a surface, fUag;a ¼ 1; 2; . . ., is an open covering of M, thus
M � [afUag. If for each Ua, there is a homeomorphism
fa : Ua ! E2, whereE2 is the euclidean plane, then ðUa;faÞ is
a chart and M is a topological surface. This work is based on
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topological surfaces. Sowe use the terms surface and topolog-
ical surface interchangeably in this paper. The Wasserstein
distance computationwas extended toRiemannianmanifolds
in [12] and the conformal Wasserstein distance was studied
between disk-type surfaces [13], [14] and genus-0 closed sur-
faces [15]. Later, an entropic regularization was proposed in
[16] to reduce Wasserstein distance computational cost and
the algorithm was extended to geometric domains in [17]. To
date, few studies have investigated the Wasserstein distance
between general topological surfaces.

In practice, many 3D shapes havemore complicated topol-
ogy than disk-type and genus-0 closed surfaces. They are
either high-genus surfaces or genus-0 surfaces with multiple
(more than 2) open boundaries. We call them general topologi-
cal surfaces. For example, in brain imaging research, landmark
curves are often added on cortical surfaces to denote impor-
tant common sulcus patterns across subjects [18]. One
approach is to model these curves as surface boundaries by
cutting open cortical surfaces along these landmarks. Thus
they are modeled as open boundaries to be matched across
subjects [19], [20] or be used as shape indices [5], [21]. Existing
algorithms forWasserstein space study are unable to compute
Wasserstein distance on such surfaces. This paper proposes a
novel framework to tackle this problem by integrating hyper-
bolic Ricci flow [22], [23], hyperbolic harmonic map [20], sur-
face tensor-based morphometry (TBM) [24], [25], and the
OMTmap [8], [26]. We extend the OMTmap andWasserstein
distance computation to the hyperbolic space, i.e., the
Poincar�e disk. The resulting Wasserstein distance is called
hyperbolic Wasserstein distance [27] andmay provide an impor-
tant tool for general topological surface indexing research.

This paper applies the hyperbolic Wasserstein distance to
index and compare genus-0 surfaces that have multiple
(more than 2) open boundaries, which are called multiply
connected surfaces. Fig. 1a is an example of the multiply con-
nected surfaces, which is a human face surface with 4 open
boundaries, denoted as g0; g1; g2; g3, respectively. We tested
the proposed algorithm with shape classification study on
human face surfaces from different people and Alzheimer’s
disease (AD) progression tracking using 3D cortical surface
models. Experimental results demonstrate that the hyper-
bolic Wasserstein distance is promising to be a novel,
refined and effective tool for general shape indexing.

In summary, major contributions of this paper are:

1) we propose a novel algorithm to compute the Was-
serstein distance between general topological surfa-
ces based on hyperbolic Riemannian metric, which
may provide a powerful single shape index to char-
acterize surfaces with complicated topology;

2) we extend the OMT map to the hyperbolic Poincar�e
disk, which greatly enhances its applicability for
general topological surface analysis;

3) we deploy a general framework that may be applica-
ble for other shape spacework.Most shape space stud-
ies in the literature only work with genus-0 surfaces
(e.g., [28], [29], [30]), which cannot be easily extended
to high-genus surfaces, due to the fact that most high-
genus surfaces are not conformally equivalent so it is
difficult to build a canonical space for them. Our
framework adopts the hyperbolic Ricci flow [22], [23]
and hyperbolic harmonic map [20] to build diffeomor-
phic matchings between general topological surfaces
andmay help generalize other shape space algorithms
to general topological surfaces aswell.

2 PREVIOUS WORK

2.1 Shape Space

The manifold shape space research was pioneered by [2]. In
the Kendall’s space, Brignell et al. [31]modeled brain surfaces
as star-shaped objects and computed a radial function which
measures the size and shape of the brain surfaces. This work
has been applied to study brain shape asymmetry in schizo-
phrenia [31]. In the computational anatomy framework, the
space of diffeomorphisms was carefully studied [3], [32]. In
[33], [34], shape space was defined as the space of orbits of the
reparameterization group acting on the space of immersions
and measures the similarities between two shapes by the
deformation between them. Various reparameterization
invariant (RI) metrics were defined with the immersion f ,
using its volume form and mean curvature [35], or its area
multiplication factor [28]. Ametric that is invariant toM€obius
transformations was introduced in [13] for shape comparison
based on conformal uniformization and OMT. Later, the con-
vergence analysis of the arisingmass transportation problems
was provided in [36]. The Gromov-Wasserstein distance
between metric spaces was introduced in [4] as isometry
invariance for shapematching and comparison.

2.2 Optimal Mass Transportation

The optimal mass transportation problem was raised by
Monge [37] and its existence and uniqueness were proved

Fig. 1. (a) A multiply connected human face surface; (b) the fundamental
group of surface (a); (c) the fundamental domain of surface (a); (d)
another fundamental domain of surface (a), which is deformed from (c)
with a Fuchsian transformation of surface (a).
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in [26] with linear programming. The Monge-Kantorovich
optimization has numerous applications in various fields,
including physics, economics, computer science, etc. [38].
The OMT also provides a powerful tool for image process-
ing [39], [40]. However, the high computational cost of the
Monge-Kantorovich optimization greatly limits its applica-
tions in many fields. An alternative optimization method,
the Monge-Brenier optimization [8], can significantly reduce
the time complexity of the OMT. Based on this method, the
OMT has been applied in blue noise generation [41], 2D
shape reconstruction and simplification [42], area preserv-
ing mappings of 3D surfaces [14], and conformal Wasser-
stein distance computation [14].

2.3 Shape Indexing

In literature, Many shape indexing algorithms have been pro-
posed and studied (as reviewed in [43]). The spherical har-
monics [44], [45] are widely used to compare and match
surfaces that are homotopic to spheres. The heat kernel signa-
ture (HKS) describes each surface point’s local and global geo-
metric information using heat diffusion method [46]. The
HKS is invariant to isometric transformations and has exten-
sive applications in shape classification [47], matching [46],
and retrieval [48]. The medial representations or m-reps [49]
of surfaces encode rich information about local shape variants
and are used in many shape analysis applications [50], [51].
Rooted in conformal geometry, the histogram of the confor-
mal factors was used in [52] to characterize different shapes
and it is invariant to both rigid motions and pose changes. If
two surfaces can be conformally mapped to each other, they
are conformally equivalent and share the same coordinate in
the Teichm€uller shape space. Teichm€uller space coordinate
based shape indices are invariant to conformal mappings and
have been widely applied in computer vision [22] and brain
imaging [5], [21] research. Additionally, spectral l2 distance
provides a rigorous comparison of shape differences based on
intrinsic geometry. It has been applied formajor sulci identifi-
cation on vervet cortices [53].

3 THEORETICAL BACKGROUND

3.1 Conformal Mapping

Given a surface S 2 R3, its Riemannian metric g is a tensor
that defines an inner product on the tangent space of S. Sim-
ply speaking, g is the unit for measuring curve length on S.
Let f : ðS1; g1Þ ! ðS2; g2Þ be a diffeomorphic map between
two Riemannian manifolds S1 and S2. If the pullback metric
of f, f�g2, differs from g1 by a scalar, as defined by

f�g2 ¼ e2�g1, then f is a conformal map from S1 to S2, where
� : S1 ! R is the conformal factor.

Definition 1 (Surface Ricci Flow). [54]: Given a surface

ðS;gÞ, the normalized surface Ricci flow is defined as dgðtÞ
dt ¼� 4pxðSÞ

Að0Þ � 2KðtÞ�gðtÞ, where Að0Þ is the total area of S at time

0, xðSÞ is the Euler characteristic number of S and KðtÞ is the
Gaussian curvature of S at time t.

Surface Ricci flow is based on the fact that there is a cor-
respondence between the Riemannian metric g and the sur-
face Gaussian curvature K. It conformally deforms the
metric to induce constant or user-defined Gaussian

curvature on S [22]. It has been proved that if xðSÞ < 0, the
solution to the normalized Ricci flow equation exists for all
t > 0 and converges to a metric with constant Gaussian cur-

vature 2pxðSÞ
Að0Þ [54]. With conformal mapping, which con-

strains gðtÞ ¼ e�ðtÞgð0Þ, we obtain the following simplified
Ricci flow equation

d�ðtÞ
dt

¼ �2KðtÞ: (1)

Proof of the above equation can be found in [19].

Theorem 1 (Klein-Poincar�e Uniformization Theory). All
compact surfaces can be conformally mapped to one of three
canonical spaces with constant Gaussian curvatures, i.e., the
unit sphere with Gaussian curvature 1, the 2D euclidean plane
with Gaussian curvature 0, and the hyperbolic disk with Gauss-
ian curvature -1, depending on the Euler number of the surface
is positive, zero, or negative, respectively. In other words, surfa-
ces with Euler numbers x > 0 can be conformally mapped to
the unit sphere S2, surfaces with x ¼ 0 to the euclidean plane
E2, and surfaces with x < 0 to the hyperbolic space H2. The
surface metric corresponding to the constant Gaussian curva-
ture is the uniformization metric, which is conformal to the
original euclidean metric.

Definition 2 (Fundamental Group and Fuchsian Group).
Let ðS;gÞ be a surface with Euler number xðSÞ < 0 and its
hyperbolic uniformization metric is �g. Let p 2 S be a base point,
if two loops through p can deform to each other without leaving
S, then they are homotopic to each other. All the homotopic clas-
ses of loops form the fundamental group of S. By slicing S
along the fundamental group of loops, we obtain the simply
connected domain of S, i.e., a genus-0 surface with a single
boundary, denoted as �S. For multiply connected surfaces, their
fundamental groups consist of paths that connect existing
boundaries. Fig. 1a shows a multiply connected surfaces with
4 boundaries (g0, g1, g2, g3). As illustrated in Fig. 1b, its funda-
mental group consists of 3 paths, which are denoted as t1; t2; t3.
Then ðS; �gÞ denotes the fundamental domain of S, which is an
embedding of S inH2, as shown in Fig. 1c. A Fuchsian transfor-
mation f is a M€obius transformation (Eq. (3)) that maps ð �S;pÞ,
where p : �S ! S is a local homeomorphism, to another period
and preserves the projection p � f ¼ p. All Fuchsian transfor-
mations form the Fuchsian group of S. Fig. 1d illustrates one
of the Fuchsian transformations that maps the surface in Fig. 1c
to a different location. With the Fuchsian group of transforma-
tions, we can tile the universal covering space of S. For a
surface with a negative Euler number, its universal covering
space is the entire Poincar�e disk, as introduced below.

Definition 3 (Hyperbolic Geometry). We use the Poincar�e
disk model to visualize the hyperbolic spaceH2. Poincar�e disk is
the unit disk in the complex plane fz 2 C; jzj < 1g with the
Riemannian metric ds2 ¼ 4dzd�z

ð1�z�zÞ2, as shown in Fig. 2a. Given

two points z1; z2 in the Poincar�e disk, the hyperbolic distance
between them is defined as

distðz1; z2Þ ¼ tanh�1k z1 � z2
1� z1 �z2

k: (2)

The rigid motion in the Poincar�e disk is the M€obius transfor-
mation
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z ! eiu
z� z0
1� �z0z

: (3)

A geodesic (hyperbolic line) in the Poincar�e disk is a circular
arc that is perpendicular to the unit circle, as illustrated in
Fig. 2b. A hyperbolic circle ðc; rÞ, where c is the center and r is
the radius, is similar to a euclidean circle ðC;RÞ, with

C ¼ 2�2m2

1�m2jcj2 and R
2 ¼ jCj2 � jcj2�m2

1�m2jcj2, where m ¼ er�1
erþ1.

Another hyperbolic model that can be visualized is the
Klein model, where hyperbolic lines coincide with euclid-
ean lines, as shown in Fig. 2c. The conversion of the
Poincar�e disk to the Klein model is defined as

z ! 2z

1þ �zz
: (4)

The Poincar�e disk model is conformal to the euclidean
geometry, while the Klein model is not.

3.2 Harmonic Map

Given a surface ðS;gÞ, if its local coordinates ðx; yÞ satisfy
g ¼ e2�ðx;yÞðdx2 þ dy2Þ ¼ e2�ðx;yÞdzd�z, where � is the conformal
factor and z is the complex parameter, with z ¼ xþ
iy; dz ¼ dxþ idy; d�z ¼ dx� idy, ðx; yÞ are called the isothermal
coordinates of S. Given a map f : ðS1; g1Þ ! ðS2; g2Þ, where
g1 ¼ sðzÞdzd�z; g2 ¼ rðwÞdwd �w, z;w are the isothermal coordi-
nates on S1 and S2, respectively. Locally, we denote the
mapping as w ¼ fðzÞ or wðzÞ. We call S1 the source surface
and S2 the target surface. Then the harmonic energy of map f
is defined as

EðwÞ ¼
Z
S1

rðwðzÞÞðjwzj2 þ jw�zj2Þdxdy; (5)

where wz ¼ 1
2 ð@w@x � i @w

@yÞ; w�z ¼ 1
2 ð@w@x þ i @w

@yÞ.
The map f is a harmonic map if it is a critical point of the

harmonic energy. The necessary condition for f to be a har-
monic map is that it satisfies the Euler-Lagrange equation

wz�z þ rwðwÞ
rðwÞ wzw�z � 0: (6)

The harmonic energy (Eq. (5)) depends on the Riemannian
metric of the target surface and the conformal structure of
the source surface. If the Riemannian metric on the source
surface deforms conformally, the harmonic energy will not
change [20]. The following theorem shows that the har-
monic map with hyperbolic metrics is unique and diffeo-
morphic within a fixed homotopic class.

Theorem 2 (Yau). [55]: Suppose f : ðS1; g1Þ ! ðS2; g2Þ is a
degree-one harmonic map and g2 induces negative Gaussian
curvature, then for each homotopic class, the harmonic map is
unique and diffeomorphic.

3.3 Optimal Mass Transportation Map
and Wasserstein Distance

Let ðS; gÞ be a Riemannian manifold with metric g. We
define two probability measures m and n on ðS; gÞ and m; n
have the same total mass, i.e.,

R
S m ¼ R

S n. Let f : S ! S be a
diffeomorphic map that establishes the correspondence
between m and n. The pullback measure induced by f is
f�n ¼ detðJÞn � f, where J is the Jacobian matrix of f. If
f�n ¼ m, then f is a measure-preserving map. The transporta-
tion cost of f is

CostðfÞ ¼
Z
S

d2gðp;fðpÞÞmðpÞdp; (7)

where p 2 S is a vertex and dgðp;fðpÞÞ is the geodesic dis-
tance between p and its image fðpÞ under the metric g. The
optimal mass transportation problem finds the measure-
preserving map between two probability measures that
uses the minimal transportation cost (Eq. (7)). The OMT
induces the Wasserstein distance.

Algorithm 1. Hyperbolic Wasserstein Distance
Computation

Input: Amultiply connected surface S.
Output: The hyperbolic Wasserstein distance between S

and a template surface.
1: Compute the hyperbolic uniformization metric of S with

hyperbolic Ricci flow.
2: Compute the fundamental group of paths (green) on S

and, together with original boundaries (blue), obtain the
simply connected domain �S (Figs. 3a and 3b).

3: Embed S onto the Poincar�e disk with its hyperbolic metric
and its simply connected domain �S, we obtain the funda-
mental domain of S (Fig. 3c).

4: Tile the fundamental domain of S with its Fuchsian group
of transformations to get a finite portion of the universal
covering space of S (Fig. 3d).

5: Compute the positions of the paths in the fundamental
group as geodesics in the universal covering space (red
lines in Fig. 3e). By slicing the universal covering space
along the geodesics, we obtain the canonical fundamental
domain of S (Fig. 3f).

6: Convert the canonical Poincar�e disk to the Klein model
(Fig. 3g) and construct the initial mapping between S and
a selected template surface.

7: Diffuse the initial mapping with hyperbolic harmonic map
to obtain a global diffeomorphic map on the Poincar�e disk
(Fig. 3h).

8: Compute the OMT map between S and the template sur-
face with the hyperbolic power Voronoi diagram (Fig. 3i),
where the TBM statistic of the hyperbolic harmonic map
is used as the probability measure.

9: Compute the hyperbolic Wasserstein distance between S
and the template surface (Eq. (19)).

Definition 4 (Wasserstein Distance). Let PjðSÞ be the space
of all probability measures m on S with finite jth moment,

Fig. 2. Illustrations of hyperbolic geometry: (a) Poincar�e disk model; (b)
geodesics in Poincar�e disk; (c) Klein model.
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where j � 1. For some point p0 2 S,
R
S d

j
gðp; p0ÞmðpÞdp < 1.

Given two probability measures m; n 2 PjðSÞ, theWasserstein

distance between them is defined as the transportation cost of
the OMT map f : Sm ! Sn

Wjðm; nÞ ¼ inf
f�n¼m

�Z
S

djgðp;fðpÞÞmðpÞdp
�1

j
: (8)

Theorem 3. [7]: The Wasserstein distance (Eq. (8)) is a Rieman-
nian metric of the space PjðSÞ.

Definition 5 (Wasserstein Space). The space PjðSÞ
equipped with the Wasserstein distance forms a metric space
(PjðSÞ, Wj) and the metric space is called the Wasserstein
space [7].

4 ALGORITHMS

Our computational framework with multiply connec-
ted surfaces as an application example is summarized in
Algorithm 1 and illustrated in Fig. 3, where we use a left
cerebral hemisphere surface with 6 boundaries being cut
open along 6 landmark curves.

4.1 Discrete Hyperbolic Ricci Flow

We use triangular meshes to approximate smooth surfaces
in our algorithm implementation. Let MðV;E; F Þ be a tri-
angular mesh, where V is the vertex set, E is the edge
set, and F is the triangular face set. A vertex is denoted
as vi, an edge connecting the vertices vi and vj is denoted
as eij, a triangular face formed by the vertices vi; vj; vk is
denoted as fijk, the corner angle attached to vertex vi in

the face fijk is denoted as u
jk
i . In hyperbolic geometry,

every face is a hyperbolic triangle, as shown in Fig. 4a.
The discrete Riemannian metric is a function defined on
each edge l : E ! Rþ and in each face fijk, it satisfies the
triangle inequality, i.e., lij þ ljk > lki. Usually, it is the
edge length.

The discrete Gaussian curvature on a vertex vi 2 M can
be computed by the angle deficit,

Ki ¼
2p�P

fijk2F u
jk
i ; vi 62 @M

p�P
fijk2F u

jk
i ; vi 2 @M

(
; (9)

where @M represents the boundary ofM.
In hyperbolic Ricci flow computation, corner angles in

each hyperbolic triangle are computed with the hyperbolic
cosine law

ui ¼ cos �1 coshðlijÞ coshðlkiÞ � coshðljkÞ
2 sinhðlijÞ sinhðlkiÞ ; (10)

where sinhðlÞ ¼ el�e�l

2 and coshðlÞ ¼ elþe�l

2 .
Theoretically, a conformal mapping maps infinitesimal

circles on one surface to infinitesimal circles on another sur-
face and preserves the intersection angles among the circles.
In discrete setting, the circle packing metric [56] of a surface
approximates the infinitesimal circles with finite circles. The
circle packing metric consists of two functions, a vertex
radius function r and an edge weight function F. The func-
tion r : V ! Rþ assigns a real positive value ri on each ver-
tex vi, which represents the radius of a circle that centers at
vi. The function F : E ! ½0;p=2	 assigns a real positive
weight value fij on each edge eij, which represents the
intersection angle between the circles that center at two ver-
tices of the edge eij. The circle packing metric on a hyper-
bolic triangle is illustrated in Fig. 4b. Ricci flow can be
implemented with the circle packing metric by changing
the vertex radius function and keeping the edge weight
function unchanged. The result is a surface with changed
metric and preserved angles.

With circle packing metric, the length of the edge eij can
be computed with the hyperbolic cosine law as

lij ¼
cosh�1ðcoshðriÞ coshðrjÞ þ cos ðfijÞ sinhðriÞ sinhðrjÞÞ:

(11)

Let L ¼ ð�1; �2; . . .; �nÞ : V ! R be the conformal factor
vector, where n is the number of vertices on the mesh M.
We define [22], [23]

�i ¼ log ðtanh ri
2
Þ: (12)

The discrete Ricci flow is defined in exactly the same
form as the continuous Ricci flow equation (Eq. (1)) [19], [22]

Fig. 3. The overall computational pipeline of the proposed hyperbolic
Wasserstein distance.

Fig. 4. (a) A hyperbolic triangle; (b) the circle packing metric on a
hyperbolic triangle.
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d�iðtÞ
dt

¼ �2KiðtÞ: (13)

Let L0 ¼ ð0; 0; . . .; 0Þ be the conformal factor vector at time 0,
the discrete hyperbolic Ricci energy is defined as [19], [22]

fðLÞ ¼
Z L

L0

Xn
i¼1

Kid�i: (14)

The discrete Ricci flow (Eq. (13)) is the negative gradient
flow of the hyperbolic Ricci energy. Thus, the hyperbolic
Ricci energy can be minimized with the gradient descent
method using (Eq. (13)) [23].

Algorithm 2. Discrete Hyperbolic Ricci Flow

Input: Amultiply connected triangular meshM.
Output: The hyperbolic uniformization metric ofM.

1: For each vertex vi, assign an initial value to ri.
2: For each edge eij, compute its weight function value fij with

the hyperbolic cosine law (Eq. (11)).
3: Initialize the conformal factor on each vertex vi as 0.
4: repeat

(1) Compute the edge lengths lij with (Eq. (11)).
(2) Compute the corner angle ujki with (Eq. (10)).
(3) Compute the discrete Gaussian curvatureKi on each

vertex vi with (Eq. (9)).
(4) Update the conformal factor on vertex vi with

�iðtþ 1Þ ¼ �iðtÞ � 2DtKiðtÞ.
(5) Update the radius function value on vertex vi with

(Eq. (12)).
until the resulting Gaussian curvature of all vertices is less than a
user-defined threshold.

The discrete hyperbolic Ricci flow algorithm with gradi-
ent descent optimization is described in Algorithm 2. For

more details of hyperbolic Ricci flow and the stabler New-
ton’s optimization, please refer to [21], [22].

4.2 Poincar�e Disk Embedding

With the hyperbolic uniformizationmetric, we can embed the
surface M onto the Poincar�e disk. The simply connected
domain of M should be obtained by computing its funda-
mental group for 2D embedding. This work computes the
fundamental group of amultiply connected surface by choos-
ing the longest boundary on it and tracing a path from that
boundary to one of the endpoints of every other boundary.
The paths are traced with Dijkstra’s algorithm with avoid-
ance of collisions [57]. An example is illustrated in Figs. 5a
and 5b with the cortical surface in Fig. 3a, where the six land-
mark curves aremodeled as open boundaries and denoted as
fg1; g2; g3; g4; g5; g6g. The fundamental group of paths are
computed by connecting boundary g5 to every other bound-
ary and the path to boundary gi is denoted as ti. By slicingM
along the fundamental group of paths, we obtain its simply
connected domain �M. The Poincar�e disk embedding process
is detailed in Algorithm 3. Given the Riemannian metric of
the Poincar�e disk model, the conformal factor near bound-
aries of the embedding goes to infinity. This may introduce
instability in the following computations, especially for com-
plicated surfaces as those of human cortices. To address this
problem, in the embedding algorithm, we pick the seed face
f012 to be a triangle that is close to the center of the fundamen-
tal domain of each surface. As a result, the embedding is close
to the center of the Poincar�e disk. The fundamental domain of
surfaceM is shown in Fig. 5c.

Algorithm 3. Poincar�e Disk Embedding

Input: A triangular mesh M with hyperbolic uniformiza-
tion metric and its simply connected domain �M .

Output: The 2D embedding of �M onto the Poincar�e disk.
1: Copy the hyperbolic metric fromM to �M .
2: Select a seed face f012 ¼ ½v0; v1; v2	 2 �M, map the three verti-

ces to the Poincar�e disk as:

pðv0Þ ¼ ð0; 0Þ; pðv1Þ ¼ el01 � 1

el01 þ 1
ð1; 0Þ;

and

pðv2Þ ¼ el02 � 1

el02 þ 1
ðcosu120 ; sinu120 Þ:

3: Put all the neighboring faces of f012 to a queue.
4: while the queue is not empty do
5: Pop the first face fijk from the queue;
6: if fijk has been embedded then
7: Continue;
8: else
9: Suppose vertices vi and vj have been embedded, com-

pute the intersections of two hyperbolic circles,
ðpðviÞ; likÞ and ðpðvjÞ; ljkÞ.

10: Then pðvkÞ is chosen as the intersection point that keeps
the face upward.

11: Put the neighboring faces of fijk in the queue.
12: end
13: end

Fig. 5. Front (a) and back (b) views of a left cortical surface with six
landmark curves and the fundamental group of paths; (c) embedding of
the cortical surface onto the Poincar�e disk.
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4.3 Geodesic Curve Lifting

As shown in Fig. 5c, in the fundamental domain of the sur-
face M, existing boundaries fg1; g2; g3; g4; g5; g6g on M
become geodesics on the Poincar�e disk. However, the paths
in the fundamental domain are not geodesics and as the
paths tracing algorithm depends on the geometry of each
3D surface, they are not consistent across subjects either.
Thus the fundamental domain of a multiply connected sur-
face cannot serve as the canonical parameter space for
surface registration [23]. We solve this problem by applying
a geodesic curve lifting step to achieve consistent boundaries
with the Fuchsian group of M [23]. In the fundamental
domain, each path ti is split to two identical halves, tþi and
t�i . There exists a unique M€obius transformation from tþi to
t�i and another unique M€obius transformation from t�i to
tþi . All these M€obius transformations form the Fuchsian
group of the surface M. Any other M€obius transformation
on M can be obtained by composing the Fuchsian group
of transformations, so they are called the Fuchsian group
generators.

We explain the details for computing the M€obius transfor-
mation from tþi to t�i and others can be obtained with the
same method. As illustrated in Fig. 6a, counterclockwisely,
we denote the starting and ending points of each side as
@tþi ¼ ðpþi ; qþi Þ and @t�i ¼ ðq�i ; p�i Þ. In the Poincar�e disk, the
geodesic distance from pþi to qþi equals the geodesic distance
from p�i to q�i . First, we compute a M€obius transformation tþi
tomap pþi to the origin and qþi to a real positive number, with

tþi ¼ eiu
þ
i
z� pþi
1� z �pþi

; uþi ¼ arctan
� pþi � qþi
1� �pþi q

þ
i

�
: (15)

Similarly, we can compute the M€obius transformation to
map p�i to the origin and q�i to a real positive number. The
transformations are illustrated in Fig. 6a. Then with the
requirement that tþi ðqþi Þ ¼ t�i ðq�i Þ, we obtain the final
M€obius transformation ti ¼ ðt�i Þ�1 � tþi , which satisfies
tiðpþi Þ ¼ p�i and tiðqþi Þ ¼ q�i . As shown in Fig. 6, the funda-
mental domain above the u axis in (a) is transformed to the
red region in (b) and it can be glued with the original funda-
mental domain. As a result, a finite portion of the universal
covering space, i.e., the entire Poincar�e disk, can be tiled by
mapping a fundamental domain to other periods with the
Fuchsian transformations and gluing the transformed fun-
damental domains with the original fundamental domain,
as shown in Fig. 6c. In the universal covering space, we
recompute the positions of tþi and t�i as geodesics, which
are the hyperbolic lines that are perpendicular to the unit
circle and cross certain points in the Poincar�e disk. In this
paper, similar to our prior work [23], we enforce them to
cross the endpoints of existing boundaries. These geodesics
are unique and consistent across subjects [22], [23], as
shown in Fig. 6d. By slicing the universal covering space
along the new geodesics, we obtain the canonical fundamental
domain of the multiply connected surface M, as shown in
Fig. 3f. To ensure the stability of geodesic computation near
the boundaries, we only tile a finite portion of the Poincar�e
disk by gluing each undetermined boundary t

þ=�
i with a

transformed fundamental domain. When lifted to 3D, the
positions of tis are also consistent across subjects. Fig. 7
shows two cortical surfaces from different people, although
their geometry is different from each other, the recomputed
fundamental group of paths are consistent.

4.4 Initial Map Construction

In the canonical fundamental domain of the surface M, all
boundaries become geodesic curves. Thus the canonical
fundamental domain is consistent across different subjects.
We convert the canonical Poincar�e disk to the Klein model

Fig. 6. Geodesic curve lifting: (a) Fuchsian transformations that map tþi
and t�i to the u axis; (b) Fuchsian transformation that maps tþi to t�i ; (c)
a finite portion of the universal covering space; (d) recomputation of the
fundamental group of paths as geodesics in the Poincar�e disk.

Fig. 7. When the recomputed fundamental group of paths are lifted to 3D
surfaces, they are consistent across different surfaces (a) and (b).
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with Eq. (4). The result is a hyperbolic polygon which coin-
cides with a euclidean polygon, as shown in Fig. 3g. We use
the Klein disk as the canonical space to construct the initial
map between the surface M and the template surface with
the constrained harmonic map [19], [23].

Briefly, given two multiply connected surfaces M and N
which are homotopic to each other, both of them are mapped
to the Klein disk using above algorithms. A map f : M ! N
is harmonic if Df � 0. To solve the Laplace equation, corre-
sponding boundaries on the two Klein polygons are used as
boundary conditions and are enforced to be aligned with
each otherwith linear interpolation by the arc length parame-
ter. With the finite element definition of the Laplace operator,
the initial map can be constructed efficiently by solving a lin-
ear sparse system [20]. As proved in [55], if the target domain
is convex, the planar harmonic maps are diffeomorphic.
Thus, the initial map is diffeomorphic.

In computation, the infinite conformal factor near
Poincar�e disk boundary may cause the initial map computa-
tion to fail. In our framework, we solve this problem by
decomposing the canonical fundamental domain of each
surface into smaller patches and matching corresponding
patches in different surfaces. As illustrated in Fig. 8, sup-
pose (a) and (e) are the canonical fundamental domains of
surfaces M and N , respectively. We compute consistent
geodesics to decompose the domain into 5 patches, as
shown by the red lines in (a) and (e). For each patch, we
move it to the center of the Poincar�e disk by a M€obius trans-
formation, as shown in (b) and (f). We then convert each
small patch to the Klein model, as shown in (c) and (g).
After matching corresponding Klein patches across subjects,
we convert the Klein patches back to the Poincar�e disk
model and move them back to their original positions in
the canonical fundamental domain using the inverse
M€obius transformation. By gluing the matched small
patches together, we obtain the initial map among surfaces.
As shown in Fig. 8h, the canonical fundamental domain of
surface N is registered to surfaceM (Fig. 8d).

4.5 Hyperbolic Harmonic Map

We further improve the initial map to a hyperbolic harmonic
map [20], as shown in Fig. 3h. The harmonicmaps havemany
advantages, including 1) they measure the elastic energy of
the deformations, so they are physically natural; 2) they can

be computed by solving an elliptic partial differential equa-
tion, so they are numerically stable and efficient; 3) they are
diffeomorphic for planar convex domains; 4) they continu-
ously depend on the boundary condition, so they can be con-
trolled by adjusted boundaries conditions. The hyperbolic
harmonic map has been explored in [20] to compute a global
diffeomorphic correspondence between multiply connected
surfaces. The current work incorporates the hyperbolic har-
monic map to build a canonical space for hyperbolic Wasser-
stein distance computation.

Suppose ðM; gMÞ and ðN; gNÞ are two manifolds, where
gM; gN are their hyperbolic uniformization metrics, respec-
tively. We denote their local isothermal coordinates as z and
w and the initial map as f : M ! N and fðzÞ ¼ wðzÞ. The
hyperbolic harmonic map can be computed with the follow-
ing gradient descent equation

dwðz; tÞ
dt

¼ �½wz�z þ rwðwÞ
rðwÞ wzw�z	; (16)

where rðwÞ ¼ 4
ð1�w �wÞ2 is the hyperbolic metric in the Poincar�e

disk. Algorithm 4 gives the computation details.

Algorithm 4.Hyperbolic Harmonic Map

Input: Two surfaces M and N with their hyperbolic met-
rics in the Poincar�e disk; an initial one-to-one corre-
spondence ðpi; qiÞ between the two surfaces, where
pi 2 M is a vertex and qi is a 3D coordinate on N .

Output: The hyperbolic harmonic map ðpi; QiÞ between M
andN .

1: for each vertex pi 2 M do
2: Embed the one-ring neighboring vertices of pi onto the

Poincar�e disk, do the same for its image qi. Let zi and
wi ¼ fðziÞ be the 2D coordinates of pi and qi,
respectively.

3: Compute dwiðzi;tÞ
dt using (Eq. (16)).

4: if dwiðzi;tÞ
dt < threshold then

5: return;
6: else
7: Update wtþ1

i ¼ wt
i � � dwiðzi;tÞ

dt .

8: Compute the new 3D coordinate Qi on N with the
updated wi.

9: end
10: end

Suppose pi 2 M is a vertex and it has local coordinate zi.
After the hyperbolic harmonic diffusion process, zi obtains
a new local position wðziÞ and wðziÞ is inside of a triangle
tðpiÞ ¼ ½wi; wj; wk	 on the Poincar�e disk embedding of sur-
face N . We then denote the image of pi with the pair of
ðtðpiÞ; hðpiÞÞ, where hðpiÞ is the complex cross ratio of the
four vertices ðwðziÞ; wi; wj; wkÞ, hðpiÞ ¼ ½wðziÞ; wi;wj; wk	 ¼
ðwðziÞ�wjÞðwi�wkÞ
ðwðziÞ�wkÞðwi�wjÞ . All local coordinate transitions in the confor-

mal parameter space of surfacesM andN are M€obius trans-
formations and the cross ratio h is invariant to M€obius
transformations. Thus the image representation pi ! ðtðpiÞ;
hðpiÞÞ is independent of the choice of local coordinates [20].
Furthermore, as the geodesics computed in Section 4.3
should be continuous on 3D surfaces, it ensures the hyper-
bolic harmonic map cross these geodesics with the Fuchsian
group of transformations [20].

Fig. 8. Canonical fundamental domain decomposition for the initial map
construction between surfaces.
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4.6 Surface Tensor-Based Morphometry

Surface tensor-based morphometry [24], [25] measures the
amount of local area atrophy or enlargement in an individ-
ual surface with respect to the template surface. We use sur-
face TBM to define the probability measures on the
Poincar�e disk. Given two surfaces M and N , suppose
f : M ! N is the hyperbolic harmonic map between them.
The derivative map of f is the linear map between the tan-
gent spaces df : TMðpÞ ! TMðfðpÞÞ, induced by f , where p
is a vertex on M. The map df defines the Jacobian matrix of
f and TBM is defined as the determinant of the Jacobian
matrix. In discrete setting, the TBM, T , is the area ratio of tri-
angles on M to corresponding triangles on N . It is used to
build probability distributions on two surfaces.

4.7 Discrete Optimal Mass Transportation Map and
Hyperbolic Wasserstein Distance

Following [14], [15], We compute the discrete OMT map
between two probability measures that are defined on surfa-
ces with power Voronoi diagram [58], [59]. The power Voro-
noi diagram is a generalized Voronoi diagram [59]. It
defines a partition of a plane into polygonal cells using a set
of circles. A cell spanned by a circle C includes all points
whose power distances to the circle center are smaller than
those to other circle centers.

Definition 6 (Power Voronoi Diagram). [58], [59]: Given a
Riemannian manifold ðS;gÞ, let P ¼ fp1; p2; . . .; png be a point
set on S and its weight vector W ¼ fw1; w2; . . .; wng 2 R, the
power Voronoi diagram induced by ðP;WÞ is a cell decomposi-
tion of S, such that the cell spanned by point pi is given by

CellðpiÞ ¼ fp 2 Sjd2gðp; piÞ � wi 
 d2gðp; pjÞ � wjg;
i; j ¼ 1; 2; . . .; n and i 6¼ j:

(17)

Here, d2gðp; piÞ � wi is the power distance between p and pi.
In other words, P and W are the centers and radii of the
circles that define the cell decomposition, respectively. The
power Voronoi diagram reduces to a Voronoi diagram if all
circles have equal radii, i.e., w1 ¼ w2 ¼ . . . ¼ wn.

Our work extends the power Voronoi diagram to the
hyperbolic space. Specifically, we define the geodesic dis-
tance dg in Eq. (17) between two points as the hyperbolic
distance (Eq. (2)) on the Poincar�e disk. The resulting power
Voronoi diagram is called hyperbolic power Voronoi diagram
and all geodesics that partition the cells are hyperbolic lines.
The proposed hyperbolic power Voronoi diagram is illus-
trated in Figs. 3i and 9.

Algorithm 5. Hyperbolic Optimal Mass Transportation
Map

Input: A surface M with hyperbolic metric g in the Poincar�e
disk; a probability measure m and a Dirac measure
ðP; nÞ ¼ fðpi; niÞg defined on M , where i ¼ 1; 2; . . .; n

and
R
M dm ¼ Pn

i¼1 ni; 8p 2 M.

Output: The weight vector W ¼ fw1; w2; . . .; wng that induces
the OMTmap between m and n.

1: Initialize the weight vector asW ¼ f0; 0; . . . ; 0g.
2: repeat

(1) For each pi 2 P , compute its geodesic distance to
every other vertex onM with (Eq. (2)).

(2) For each vertex p 2 M, determine which Voronoi cell
it belongs to with (Eq. (17)).

(3) For each pi, compute the total mass of the measures
in the cell spanned by it, as mi ¼

R
CellðpiÞ dm.

(4) Update each weight value by wtþ1
i ¼ wt

i þ �ðni � miÞ
(Eq. (18)).

until jni � mij; 8i 2 ½1; 2; . . . ; n	, is less than a user-defined
threshold.

Theorem 4 (Riemannian Optimal Mass Transportation
Map). [15]: Given a surface S with Riemannian metric g, sup-
pose m and n are two probability measures defined on S and they
have the same total mass.We define n as a Dirac measure with the
discrete point set support P ¼ fp1; p2; . . .; png and denote
nðpiÞ ¼ ni. There exists a weight vector W ¼ fw1; w2; . . .; wng,
unique up to a constant, such that the power Voronoi diagram
induced by ðP;WÞ gives the OMT map between m and n:
c : CellðpiÞ ! pi and

R
CellðpiÞ dm ¼ ni; i 2 ½1; 2; . . .; n	.

Furthermore, the optimal weight vector of the power
Voronoi diagram which induces the OMT map can be com-
puted by the following gradient descent equation:

dwi

dt
¼ ni �

Z
CellðpiÞ

dm: (18)

Theorem 4 provides a general framework to compute the
Riemannian OMT. Here we explore the Riemannian OMT
map on the Poincar�e disk. Assume f : M ! N is the hyper-
bolic harmonic map from surface M to target surface N ,
then dm is defined as dm ¼ TgNdA, where T is the surface
TBM of f , gN is the area ratio between area elements on N
and their counterparts in the Poincar�e disk embedding, and

Fig. 9. Illustration of the power Voronoi diagram on the Poincar�e disk,
where each point (black dot) is associated with a Voronoi cell (green
boundary) and the radius of each circle (blue) centered at each point.
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A is the hyperbolic area element. Similarly, we initialize
ni ¼

R
RegionðpiÞ gNdA; i 2 ½1; 2; . . .; n	, where RegionðpiÞ is the

Voronoi diagram cell spanned by pi on the Poincar�e disk to
establish the Dirac measure. The details of the OMT map
computation with hyperbolic metric are in Algorithm 5. In
our prior work [14], we derived the Hessian matrix for the
euclidean variational OMT solution. Similarly, the Hessian
matrix for hyperbolic OMT is under development.

The transportation cost of the OMT map that is com-
puted by Algorithm 5 defines the Wasserstein distance
between the probability measures m and n. With the hyper-
bolic metric in the Poincar�e disk, the proposed hyperbolic
Wasserstein distance is defined as

Wassersteinðm; nÞ ¼Xn
i¼1

Z
CellðpiÞ

�
tanh�1

��� p� pi
1� p�pi

����2

dmðpÞ: (19)

The proposed hyperbolic Wasserstein distance quantita-
tively represents the similarities between probability meas-
ures m and n. The formulation is quite general and may
analyze any probability distributions defined on general
topological surfaces. Here we define the probability meas-
ures as the TBM statistic, which measures the deformation

between two surfaces. As a result, the proposed hyperbolic
Wasserstein distance eventually describes the morphometry
similarities between two surfaces and may be used as a sin-
gle shape index.

5 EXPERIMENTAL RESULTS

5.1 Human Facial Expression Analysis

The first experiment applied the proposed hyperbolic Was-
serstein distance to study 3D human facial expression.
Human facial expression modeling is an interesting problem
studied for a long time [60]. The goal is to discriminate and
describe different human facial expressions. It is useful for
face recognition and dynamical facial animation research.

We chose three face meshes from the BU-3DFE Data-
base [61], including an angry face (Fig. 10a), a happy face
(Fig. 10b), and a happier face (Fig. 10c), which all belong to a
randomly selected subject. On each face surface, wemanually
removed two eyes and the mouth along their boundaries, a
common approach used in 3D face modeling [22]. The result-
ing facial surface became a genus-0 surface with four open
boundaries. We used the happy face as the template surface
to compute the hyperbolic harmonic map and the OMTmap.
First, we ran hyperbolic Ricci flow on the three surfaces and
isometrically embedded them on the Poincar�e disk, as shown
in Figs. 10d and 10f. Then, the angry and happier faces were
registered to the happy face with the hyperbolic harmonic
map (Fig. 10g). Finally, with the TBM measures, we con-
structed the OMTmaps between both faces and the template
face with the hyperbolic power Voronoi diagram (Fig. 10h).
Later, the hyperbolic Wasserstein distances between the
angry face and the template face, and between the happier
face and the template face, were computed as the costs of
respective OMT maps. Intuitively, the happier face is more
similar to the template, thus it should have smaller Wasser-
stein distance. The experimental results verified our intuition,
where the hyperbolicWasserstein distances for the angry face
and happier faces are 25.94 and 11.75, respectively. Although
multi-subject studies are clearly necessary, this experiment
demonstrates that our hyperbolic Wasserstein distance may
have the potential to quantify and measure human expres-
sion changes.

5.2 Human Face Classification

Face recognition is one of the most fundamental tasks in com-
puter vision. Given the large amount of human face images
and videos, a common practice for face recognition is to
extract and store the most distinguishable features from the
data. A testing subject is then recognized by matching its fea-
tures to those in the database [62]. Recently, 3D facial recogni-
tion [63] is attracting more attention, as it is robust to lighting
changes and can provide better results for face recognition. In
[63], the isometric invariance was used as a shape descriptor
for 3D face surfaces. A deformable model was proposed in
[64] to parameterize 3D face shapes to 2D structures. Then the
2D structures were analyzed in the wavelet domain and the
obtained spectral coefficients defined the features for compar-
ing different subjects. In [22], conformal modules were used
to index the amount of expression changes. In this experiment,
we test the feasibility of our hyperbolic Wasserstein distance
to serve as a shape index to represent a unique human face.

Fig. 10. Experimental results of human facial expression analysis with
hyperbolic Wasserstein distance.
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We randomly selected two people from the Texas 3D Face
Recognition Database (Texas 3DFRD) [65], one with 39 scans
and another with 46 scans. In Texas 3DFRD, each face image
is marked with a set of consistent fiducial points, including
the endpoints of eyes and mouth. We implemented the
Dijkstra’s algorithm to trace paths between these endpoints
to mark the positions of the eyes and the mouth. By slicing
along these paths, each face surface was converted to a multi-
ply connected surface. Fig. 11 shows some examples of the
multiply connected surfaces from both subjects. We applied
the proposed algorithm to these surfaces in the same way as
in Section 5.1, with a template face surface which did not
belong to either of the two people. Then, with the computed
hyperbolic Wasserstein distances, we applied the complex
tree in the Statistics and Machine Learning Toolbox of MAT-
LAB1 as a classifier. With a 5-fold cross validation, our
method achieved a classification rate of 88.2 percent.

We compared our method with the spectral l2 dis-
tance [53], which compares 3D shapes based on their intrin-
sic geometry. Briefly, the spectral l2 distance is computed by
optimizing the Laplace-Beltrami space embeddings of 3D
surfaces. This distance allows a rigorous comparison of sur-
faces. We also compared the hyperbolic Wasserstein dis-
tance with the surface area and mean curvature, which are
important surface features and have been widely applied in
face recognition [66], [67]. We applied the same classifier on
these measurements with 5-fold cross validations. The com-
parison results are listed in Table 1. It can be noticed that
our method significantly outperformed other methods.
These comparisons demonstrated the effectiveness of our
hyperbolic Wasserstein distance.

5.3 Cortical Shape Indexing

There is increasing interest in finding brain imaging bio-
markers for AD tacking, detection, and diagnosis. In the clini-
cal setting, a simple, universal, meaningful, and interpretable
brain imaging index is highly desired by the physicians but
remains challenging. In this experiment, we demonstrate the

feasibility of our hyperbolic Wasserstein distance to index
cortical shape morphometry for tracking AD progression.
Cortical morphometry is a valid imaging biomarker for pre-
clinical AD and has been widely analyzed in the literature
[18], [69]. Here we test our method with the T1-weighted
magnetic resonance images (MRIs), which were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database ([70], adni.loni.usc.edu).2

MR images of 115 subjects from theADNI-1 baseline data-
set were studied here, including 30 AD patients, 45Mild cog-
nitive impairment (MCI) subjects and 40 healthy old people.
MCI is the intermediate stage between normal aging and
AD. The MRIs were preprocessed using FreeSurfer [68] to
reconstruct the cortical surfaces. Only the left hemispheric
cerebral cortices were used here. Six major brain landmark
curves were automatically labeled on each cortical surface
with the Caret software,3 including the Central Sulcus,
Anterior Half of the Superior Temporal Gyrus, Sylvian
Fissure, Calcarine Sulcus, Medial Wall Ventral Segment, and
MedialWall Dorsal Segment. An illustration of the landmark
curves is shown in Fig. 12 with a left cortical surface and two
views. The landmarks are shown with different colors on
both the original and inflated surfaces for clarity. After we
cut the cortical surfaces along the delineated landmark
curves, they became genus-0 surfaces with six open bound-
aries. Then we randomly selected the left cortical surface of
a healthy control subject, who is not in the studied subject
dataset, as the template surface, and performed the same
processing as in Section 5.1. Fig. 13 illustrates the hyperbolic
Wasserstein distance computation on a pair of left cortical
surfaces. (a), (c) and (e) show the computation results of
an AD patient and (b), (d) and (f) the results of a healthy
control subject.

With the obtained hyperbolic Wasserstein distances,
we applied the one-way analysis of variance (ANOVA) in
the SPSS package4 to study differences between these three
groups. One-way ANOVA is a statistical algorithm that is
able to determine if significant differences exist between the
means of two ormore independent groups. In our results, the
hyperbolic Wasserstein distance was significantly different

Fig. 11. Multiply connected surfaces of the two persons (a) and (b) from
Texas 3DFRD.

TABLE 1
Classification Results of Our Method and Three Other

Surface Shape Features, the Surface Area, Mean
Curvature and Spectral l2 Distance

Method Classification Rate

hyperbolic Wasserstein distance 88:2%
Surface Area 52:9%
Mean Curvature 55:3%
Spectral l2 Distance 74:1%

1. http://www.mathworks.com/products/statistics.html

2. Data used in the preparation of this article were obtained from the
Alzheimers Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimers disease (AD).

3. http://brainvis.wustl.edu/wiki/index.php/Caret:About
4. http://www.ibm.com/analytics/us/en/technology/spss

1372 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 6, JUNE 2020

Authorized licensed use limited to: University of Southern California. Downloaded on March 18,2021 at 01:14:27 UTC from IEEE Xplore.  Restrictions apply. 

http://www.mathworks.com/products/statistics.html
http://brainvis.wustl.edu/wiki/index.php/Caret:About
http://www.ibm.com/analytics/us/en/technology/spss


among these three groups, with p ¼ 1:9729E � 11. A Tukey
post hoc test also revealed significant difference between AD
and control groups (p ¼ 5:1454E � 9), AD and MCI groups
(p ¼ 0:038), and MCI and control groups (p ¼ 3:8161E � 7).
We further studied the linear trend of cortical shape changes
at different diagnostic stages using SPSS. The hyperbolic
Wasserstein distances were significantly associated with the
diagnostic disease severity (linear tread p ¼ 1:5418E � 11).

As a comparison, we also computed the spectral l2

distance [53] and two other standard cortical surface shape
features, the cortical surface area and cortical volume,
where the latter two features have also been widely used in
AD research [71], [72]. The spectral l2 distance, surface vol-
ume and area are not different in these three groups with
p ¼ 0:215768, p ¼ 0:113427 and p ¼ 0:143435, respectively.
Pair-wise group comparisons with Tukey post hoc test did
not reveal any differences for the compared measures. The
linear trend analysis p-values of spectral l2 distance, surface
volume and area were p ¼ 0:081489, p ¼ 0:053915 and
p ¼ 0:070558, respectively. These results demonstrated that,
as a single shape index, our hyperbolic Wasserstein distance
showed superiority over some other single brain imaging
indices. Our work has a potential to provide a concise,
quantitative and powerful brain imaging index to track AD
development and diagnose AD in its prodromal stage.

5.4 Computational Efficiency

Our OMT map computation is based on the Monge-Brenier
approach [8], which proves that the OMT map is the gradi-
ent map of a special convex function. Thus, suppose the tar-
get domain of the optimal mass transportation problem is
discretized to k areas, the Monge-Brenier approach reduces
the computation cost from Oðk2Þ to OðkÞ [14]. To illustrate
the efficiency of the OMT map computation, we conducted
a running time comparison study with the hyperbolic Was-
serstein distance and the spectral l2 distance [53]. We tested
with a human face surface and a cortical surface with 60k
and 145k triangular faces, respectively. The results are sum-
marized in Table 2. Both algorithms were run on a 2.2 GHz
Intel i5-5200U laptop with Windows 10 64-bit operating sys-
tem. The results show that the computational cost of hyper-
bolic Wasserstein distance is much lower than spectral l2

distance, even for complex cortical surfaces.

5.5 Robustness to Noise

As the hyperbolic Wasserstein distance computes the trans-
portation between two probability measures on the canoni-
cal Poincar�e disk, it is robust to imaging noise. To validate
this property, we conducted a synthetic experiment to study
the effects of imaging noise on the resulting hyperbolic
Wasserstein distance. Similar to our prior work [21], we

Fig. 13. Hyperbolic Wasserstein distance computation results of a pair of
brain left cortical surfaces of an AD patient (a, c and e) and a healthy
control subject (b, d, and f).

Fig. 12. Landmark curves on a left cortical surface, which are automati-
cally labeled by Caret, showing in two different views (a) and (b), on both
original and inflated surfaces. The inflated surface is obtained with Free-
Surfer [68].

TABLE 2
Running Time Comparison of Hyperbolic Wasserstein

Distance and Spectral l2 Distance

Number of faces Hyperbolic Wasserstein Spectral l2

60k 74.27s 112.99s
145k 155.49s 1004.94s
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manually added a Racian noise with standard deviation 35
on an MR image that was randomly picked from the ADNI
dataset of Section 5.3. The MR images without and with
noise are present in Figs. 14a and 14b, respectively. The rela-
tive changes due to noise in different shape measures,
including hyperbolic Wasserstein distance, spectral l2 dis-
tance, surface area and volume, are summarized in Table 3.
As the results demonstrated, our hyperbolic Wasserstein
distance is relatively more robust to imaging noise.

6 CONCLUSION AND FUTURE WORK

This work introduces a novel algorithm to compute the Was-
serstein distance between general topological surfaces with
hyperbolic metric. Our work generalized the OMT and Was-
serstein space work to general surfaces. In our recent
work [73], the same algorithm was applied to fuse brain sur-
face TBM and structural connectivity information that is
obtained from diffusion MR images. In a small dataset, the
hyperbolicWasserstein distance showed better shape classifi-
cation performance than some other diffusion MRI derived
features. Its results demonstrate the feasibility and power of
incorporating other probability definition in the hyperbolic
Wasserstein distance for shape indexing. In future, we will
explore the possibility to use this framework to generalize
other shape space work to general topological surfaces. One
caveat of applying the newmethod tomultiply connected sur-
faces is how the number and locations of original boundaries/
landmark curves may impact its effectiveness. Overall, our
framework is flexible enough to handle any number (greater
than 2) of landmark curves. Here we choose 6 landmarks
from the PALS-B12 atlas because of their generality and wide
availability. Eventually, it deserves further in-depth investi-
gation on which landmark curve set should be adopted and
how their selectionwill affect the systemperformance.
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